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Abstract 

 

This paper assesses and offers a methodology for improving the accuracy of wind energy 

forecasts in Great Britain. We present evidence that the day-ahead wind energy forecast in Great 

Britain is substantially less accurate than generally believed. Evidence is also presented that the 

notifications of expected generation submitted by the wind energy generators to the system 

operator are inaccurate relative to the notifications provided by the operators of generating 

stations fuelled by conventional energy.  

Regarding prospects for improving forecast accuracy, we present evidence that the wind energy 

forecasts do not fully reflect forecasted meteorological conditions. With this insight, we 

developed a revised wind energy forecasting model using time-series methods and forecasted 

meteorological conditions as regressors. The out-of-sample results are highly encouraging. 

Specifically, the out-of-sample weighted-mean-absolute-percentage error (WMAPE) of the 

period-ahead revised forecast is less than one-fifth the WMAPE of the existing near real-time 

projection. 
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JEL Codes:  Q42, Q47 

 

Acronyms: ARMAX, autoregressive–moving-average with exogenous inputs; CCGT, combined 

cycle gas turbine; CF, capacity factor; CWRMSE, capacity weighted root-mean squared error, 

EWRMSE, energy weighted root mean squared error; FPN, Final Physical Notification; MAPE, 

mean average percentage error; MFP, multivariable fractional polynomial;  NIV, net imbalance 

volume; WMAPE, weighted mean average percentage error; 

 

 

1 Introduction 

 

A growing literature has affirmed with great confidence the feasibility of high penetration levels 

of wind energy into the power grid under existing operational methods. This optimism is based in 

part on the belief that improvements in wind energy forecasting have effectively “solved” the 

challenge of wind energy’s intermittency. For example, the UK’s Royal Academy of Engineering 

has explicitly indicated that wind energy’s capacity-weighted forecast error of about 5% is 

evidence that wind energy forecasts in Great Britain are highly accurate (Royal Academy of 

Engineering, 2014, p. 33). Using data from Great Britain, we assess and challenge this claim. We 

then offer a methodology to improve short-run forecast accuracy. 

The paper is organized as follows. In section 2, the implications of inaccurate forecasts for electric 

grid stability are discussed. Section 3 reviews and critiques the literature on the accuracy of wind 

energy forecasts while Section 4  compares the accuracy of day-ahead load and wind energy 

forecasts in Great Britain using the weighted-mean-absolute-percentage-error (WMAPE) measure 

of forecast accuracy due to its ease of interpretability and its independence in terms of scale. Using 

this metric, we find that the day-ahead wind energy forecast in Great Britain is substantially less 

accurate than the day-ahead load forecast.  

 

In section 5 the accuracy of the final physical notifications of expected generation submitted by 

the wind energy generators to the system operator one hour prior to real time are compared to the 
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accuracy of the final physical notifications submitted by generating stations fuelled by 

conventional energy. The final physical notifications submitted by the operators of the wind energy 

generating stations are shown to be substantially less accurate than the notifications supplied by 

the stations fuelled by conventional energy sources.  

 

Section 6 considers, and answers in the affirmative, the question of whether an improvement in 

the accuracy of the wind energy forecasts is possible. Evidence is presented that the wind energy 

forecasts do not fully reflect the information contained in the day-ahead weather forecasts.  The 

wind energy forecast errors also have the undesirable property of being correlated with the 

forecasted level of wind energy.   

 

Section 7 presents a time-series econometric model of wind energy production. The model is 

estimated using half-hour data over the period 1 January 2012 - 31 December 2013. We conclude  

that a substantial improvement in near real-time forecast accuracy is possible by modifying the 

forecast information based on the time-series model. The findings are summarized in section 8. 

 

2 The Importance of Accurate Forecasts 

 

“Keeping the lights on” requires adherence to fairly stringent stability conditions in terms of 

system frequency, i.e., the level of voltage and current oscillations each second. System 

frequency falls (rises) when demand exceeds (or is less than) supply. System frequency in Great 

Britain varies around the target of 50 Hz. with National Grid, the system operator in Great 

Britain, is obligated to keep system frequency within 1% of the 50 Hz target,  i.e. +/- 50 mHz.  

 (United Kingdom Electricity Safety, Quality and Continuity Regulations, 2002).      Deviations 

within the band +/- 20 mHz are considered normal. Violations of the operational limits +/- 20 
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mHz do occur (Figure 1).  These violations pose a risk to equipment and the overall reliability of 

the electric power system.  When a large and sustained violation occurs, generators and other 

equipment connected to the transmission system may be automatically disconnected to prevent 

equipment damage which in turn could result in an electricity blackout.  An example of this risk 

was when a transmission line “tripped,”, i.e. automatically disconnected itself from the 

transmission system to prevent damage, at about 17:15 local time on 9 November 1965 in the 

province of Ontario Canada. This adversely affected system frequency in New York State which 

led to generators going offline which in turn induced further declines in system frequency.  By 

about 17:28 local time, system frequency was 11 Hz below its target (Federal Power 

Commssion, 1967, p. 49). The electric power system in the northeast United States and Canada 

was largely unable to cope and by 17:30 local time about 30 million individuals lost power 

(Federal Power Commission, 1967, p. 17).  Given these possible consequences, it is troubling to 

note that the one-second system frequency data from National Grid 

(https://www.nationalgrideso.com/balancing-services/frequency-response-services/historic-

frequency-data) indicates that the incidence of violations of the operational limits in 2018 was 

about 2.5 times the level in 2014 (36,325 seconds in 2018 vs 14,200 seconds in 2014). Fortunately, 

the statutory limits were not violated over the period 2014-2018 but the range of 49.556 to 50.41 

Hz is hardly reassuring.  

https://www.nationalgrideso.com/balancing-services/frequency-response-services/historic-frequency-data
https://www.nationalgrideso.com/balancing-services/frequency-response-services/historic-frequency-data
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Figure 1: System frequency in Great Britain’s power grid, 1 Dec–31 Dec 2013 

 

Errors in electricity load forecasts and the failure of suppliers to adhere to their generation and 

transmission schedules are the root causes of the variability in system frequency. National Grid 

attempts to offset this by dispatching balancing power, supplied largely by combined-cycle gas 

turbines (CCGT) and coal-fired power stations. A key measure of the electricity imbalance 

during a 30-minute settlement period in Great Britain is known as the net imbalance volume 

(NIV). NIV equals the sum of all energy deployments initiated by National Grid to balance the 

system during the settlement period. Positive (negative) NIV values indicate a shortage (surplus). 

Large NIV outcomes in absolute value represent instances in which the reliability of the system 

is challenged. Large positive NIV values are especially problematic as most conventional 

generating technologies require non-negligible response times when additional generation is 
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needed. Over the period 1 January 2012 through 31 December 2013, the average level of NIV 

was negative, but very volatile from one market period to the next (Figure 2). 

 

 
 

Figure 2: Net energy imbalance in the power grid that serves Great Britain, 1 Jan 2012 - 31 

Dec 2013 

The costs of balancing the system are nontrivial. Based on data downloaded from National Grid, 

the total balancing costs in 2012 and 2013 were about £923 million and   £989 million, 

respectively (https://www.nationalgrid.com/uk/electricity/charging-and-methodology/balancing-

services-use-system-bsuos-charges ). This is over 50% higher than the annual costs in 2005-2006 

(National Audit Office, 2014   p. 18). This finding of increasing costs is consistent with the 

results reported by  Joos and Staffell (2018) for both Germany and Great Britain.  

  

https://www.nationalgrid.com/uk/electricity/charging-and-methodology/balancing-services-use-system-bsuos-charges
https://www.nationalgrid.com/uk/electricity/charging-and-methodology/balancing-services-use-system-bsuos-charges
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3 The Literature on Wind Energy Forecast Accuracy 

 

As noted earlier, the UK’s Royal Academy of Engineering (2014, p. 33) has reported a capacity 

weighted forecast error of about 5%. This is presented as evidence that wind energy forecasts are 

highly accurate. But is this really true? Before answering, consider that Lange, et al. (2006, 2007, 

2009), Cali et al. (2006),  Krauss, et al. (2006), Holttinen, et al. (2006), Kariniotakis, et al. 

(2006), Milligan, et al. (2009), IPCC ( 2012 p, 623)  and even North American Electric 

Reliability Corporation (NERC; 2010, p. 9) all report wind energy forecast error metrics that are 

weighted by the capacity of the equipment used to produce the energy.  These publications make 

it appear that wind energy forecasting has resolved the intermittency challenge. For example, in a 

publication entitled, “Wind Power Myths Debunked,” Milligan, et al. (2009) draw on research 

from Germany to assert that it is not difficult to accurately forecast wind energy. In their words:  

“…typical wind forecast errors for a single wind project are 10% to 15% root mean-squared 

error (RMSE) of installed wind capacity (emphasis added) but drop to 5% to 7% for all of 

Germany.”(Milligan, et al. 2009, p. 93).  

 

The notion that the challenge of wind energy’s intermittency is mythological is increasingly 

accepted. For example, Sovacool (2009) interviewed 62 individuals affiliated with electric 

utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit 

organizations, energy consulting firms, universities, national laboratories, and state institutions in 

the United States. Based on their responses and a review of the literature, Sovacool concluded 

that  “…the intermittency of renewables can be predicted, managed, and mitigated, and that the 
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current technical barriers are mainly due to the social, political, and practical inertia of the 

traditional electricity generation system.”  

In light of these beliefs, we proceed by taking a closer look at the capacity weighted root mean 

squared error (CWRMSE), which  can be calculated as follows: 

𝐶𝑊𝑅𝑀𝑆𝐸 =  
√∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑡−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡)2𝑇

𝑡=1
𝑇

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
   *100%    (1) 

      
Where Actualt is the actual wind energy produced in megawatts (MW) for period t, Forecastt is 

the period t forecasted level of energy in period t measured in MW of energy, and Installed 

Capacity is the MW of wind energy that could be produced if the wind turbines were operating at 

their  capacity.  

 
Unfortunately, the actual wind energy generated is almost always substantially less than the 

installed capacity of the wind turbines. On average, the median ratio of actual wind energy 

production to capacity, i.e., the capacity factor, in Great Britain was about 26% for the period 1 

January 2012 through 31 December 2013. The highest capacity factor over the same period was 

about 92%. Thus, advocates for normalizing wind energy RMSEs by installed capacity are 

implicitly in favor of weighting by a benchmark that is much higher than the typical value of the 

actual level of generation. Moreover, meaningful comparisons between CWRMSEs and 

published measures of load forecast accuracy are precluded as the latter are normalized by the 

mean of actual energy consumption. An alternative metric of forecast accuracy is the energy 

weighted RMSE (EWRMSE) calculated as: 

𝐸𝑊𝑅𝑀𝑆𝐸 =  
√∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑡−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡)2𝑇

𝑡=1
𝑇

(∑ 𝐴𝑐𝑡𝑢𝑎𝑙𝑡
𝑇
𝑡=1 ) 𝑇⁄

 *100%                              (2) 
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where the denominator is average energy produced from t = 1 to T. Defining the average capacity 

factor (CF) as 

                                                  𝐶𝐹 =  
(∑ 𝐴𝑐𝑡𝑢𝑎𝑙𝑡)/𝑇𝑇

𝑡=1

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
,                                                  (3) 

equation (2) can be rewritten to yield 

                    CWRMSE  = CF * EWRMSE.     (4) 

      
The relationship described by (4) demonstrates that EWRMSE will exceed the associated 

CWRMSE whenever CF is less than one. The differences for wind energy can be substantial. For 

example, Staffell and Pfenninger (2016) estimate an average annual capacity factor for Great 

Britain of about 29% over the period 2005-2014. From (4), this means that the EWRMSE is 

almost 3.5 times larger than the associated CWRMSE. In effect, equation (4) shows explicitly 

that the CWRMSE conflates the forecast error normalized by average energy produced with the 

capacity factor. Consequently, a generating technology with a low capacity factor may have a 

smaller CWRMSE than a technology with higher capacity factor but a lower EWRMSE. 

Moreover, a decline in the capacity factor with EWRMSE unchanged would create the mistaken 

impression of improved forecast accuracy even though the forecast error in terms of energy has 

remained the same. 

 

In this paper, we will not engage in a debate of EWRMSE vs. CWRMSE – we have discovered 

that adherents of capacity weighting simply justify this practice because it is the approach 

favored by the wind power industry – as if the important issue of wind energy integration should 

be under the preview of commercial interests. Instead, we will examine the claim of wind energy 

forecast accuracy using a modified accuracy metric that is well known and largely accepted by 



10 

 

professional forecasters outside the field of wind energy forecasting. The metric we will employ 

is a variant of the mean-absolute-percentage-error (MAPE), which is calculated as follows: 

𝑀𝐴𝑃𝐸 =  ∑ |
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡−𝐴𝑐𝑡𝑢𝑎𝑙𝑡

𝐴𝑐𝑡𝑢𝑎𝑙𝑡
|𝑇

𝑡=1 *100%                                   (5) 

 
According to Hyndman (2006), a prominent scholar in the field of forecasting, MAPE is the 

most commonly used measure of forecast accuracy when one wants to express the error as a 

percent so as to compare forecast performance across different data sets. One shortcoming of 

MAPE is that the error for time period t is undefined if Actualt equals zero. Other shortcomings 

include a bias noted by Armstrong (1985) as well as the fact that the measure is sensitive to small 

errors that are large in percentage terms. To avoid these issues, we will make use of a weighted-

mean-absolute-percentage-error (WMAPE) which is defined as follows: 

 

𝑊𝑀𝐴𝑃𝐸 =  
1

𝑇
 ∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑡−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡|𝑇

𝑡=1
1

𝑇
∑ 𝐴𝑐𝑡𝑢𝑎𝑙𝑡

𝑇
𝑡=1

 *100%    (6)  

 
WMAPE represents the mean absolute error divided by the mean of the actual outcome ( Kolassa 

and Schütz, 2007). In contrast to either the CWRMSE or the EWREMSE, it is relatively easily 

understood by users. It has the advantage of being scale-free and thus it facilitates comparison of 

forecast accuracy among forecast variables of interest such as solar energy, wind energy, and 

load.  
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4 The Accuracy of the Day-Ahead Load and Wind Energy Forecasts in Great Britain 

 

 

The day-ahead wind energy forecast in Great Britain is substantially less accurate than the day-

ahead load forecast. Specifically, the WMAPE for the day-ahead wind energy forecast is 31.43% 

(Figure 3), while the WMAPE corresponding to the day-ahead load forecast is 1.42% (Figure 4).  

The differential in the two levels of accuracy is even greater when the comparison is based on the 

MAPEs as opposed to the WMAPEs. Specifically, the MAPE corresponding to the day-ahead 

load forecast is 1.46% while the MAPE for the day-ahead wind energy forecast is about 58.66%.     

To double-check ourselves, we calculated a mean-squared-error skill score (MSESS) for both 

sets of forecast errors using the respective persistence forecasts as the reference, the latter being 

defined as a forecast that assumes the activity level in period t will equal the activity level in 

period t-1. The results indicate that the day-ahead load forecast is superior to its persistence load 

forecast, while the day-ahead wind energy forecast is inferior to a persistence wind energy 

forecast.  This finding is consistent with the conclusions by Forbes et al. (2012) for Western 

Denmark, Eastern Denmark, Elia in Belgium, 50Hertz formerly Vattenfall) in Germany, 

Amprion (formerly RWE) in Germany, TenneT in Germany (formerly E.ON NETZ) the 

Midwest ISO in the U.S., and ERCOT in the U.S.  For each of these electric power systems,  the 

day-ahead load forecasts were more accurate than the day-ahead wind energy forecasts by a wide 

margin.  
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Figure 3: National Grid’s day-ahead wind energy forecast and the metered level of wind 

energy generation adjusted for curtailments, 1 Jan 2012–31 Dec 2013  
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Figure 4: National Grid’s day-ahead Load forecast and the realized level of load, 1 Jan 

2012–31 Dec 2013  

 

 

5 How does Wind Energy in Great Britain Compare with Conventional Forms of 

Generation? 

 

In Great Britain, generating stations inform the system operator of their intended level of 

generation one hour prior to real-time. This value is known as the final physical notification 

(FPN). Generators also submit bids (proposals to reduce generation) and offers (proposals to 

increase generation) to provide balancing services. During real-time, the system operator accepts 

bids and offers based on its assessment of system conditions. The revised generation schedule 

equals the FPN plus the level of balancing services volume requested by the system operator. 



14 

 

Failure to follow the revised generation schedule gives rise to an electricity market imbalance 

that needs to be resolved by other generators. 

 

Using FPN and balancing services data from National Grid, we compared scheduled levels of 

generation with metered generation. For CCGT, the WMAPE is 4.18% (Figure 5); for nuclear, 

5.85% (Figure 6); for coal-fired generating stations, 1.89% (Figure 7); and for wind energy, 

13.84% (Figure 8).  

 

 

 
Figure 5: Actual vs. scheduled generation: The case of CCGT in Great Britain, 1 Jan 2012–

31 Dec 2013 
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Figure 6: Actual vs. scheduled generation: The case of nuclear energy in Great Britain, 1 

Jan 2012–31 Dec 2013 
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Figure 7: Actual vs. scheduled generation: The case of coal-fired generation in Great 

Britain, 1 Jan 2012–31 Dec 2013 
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Figure 8: Metered vs. scheduled generation: The case of wind energy generation in Great 

Britain, 1 Jan 2012–31 Dec 2013 

 

The data from National Grid also make it possible to calculate energy imbalances by fuel type. 

Based on these data, we report the mean levels of imbalances weighted by the mean levels of 

metered generation in Figure 9. The energy imbalances for coal, CCGT, and nuclear are 

substantially less than 10%, while the imbalance that National Grid attributes to wind energy 

exceeds 30%. This suggests that a substantial portion of the energy scheduled to be produced 

using wind turbines is actually generated using some other energy source. This is consistent with 

Wheatley’s finding (2013) that the per MWh reductions in CO2 attributable to wind energy in 

Ireland is less than the implied average carbon intensity in the absence of wind energy.   It is also 
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consistent with Forbes and Zampelli (2019) who report that CO2 benefits of wind energy 

penetration given current operational methods are subject to diminishing marginal returns. 

 

 

 

 
 

Figure 9: Energy Imbalances by Fuel Type, 1 Jan 2012–31 Dec 2013 

 

A critic has asserted that the wind energy WMAPE for the period 1 January 2012 through 31 

December 2013 is not representative. To assess this claim, we obtained the half-hour metered 

generation, FPN, and balancing services data for wind energy stations directly connected to the 

transmission system in Great Britain for the period 1 April 2005 through 31 December 2011. The 

calculated value of WMAPE for this period is 22.64% (Figure 10). In this sense, the results for 

the 2012-2013 period represent an improvement.  
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Figure 10: Metered vs. scheduled generation for wind energy generating stations in Great 

Britain directly connected to the transmission system, 1 Apr 2005–31 Dec 2011  

 

 

6 Prospects for Improving Forecast Accuracy 

 

Improving forecast accuracy requires as a first step an examination of the errors in the existing 

forecasts. We begin by pointing out that the errors in an optimal day-ahead forecast should be 

uncorrelated with information that is known prior to real-time. In the case of a day-ahead 

forecast, the error should be uncorrelated with the errors in previous days. Moreover, the errors 

should uncorrelated with the day-ahead level of forecasted wind energy given that this is 

obviously  known when the day-ahead forecast is generated. With respect to meteorological 

conditions, it follows that while the errors in an optimal forecast will most likely be correlated 
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with unexpected meteorological conditions, they will not be correlated with meteorological 

conditions that that are expected to occur.   

With the notion of the errors of an optimal forecast in mind, we proceed by first reporting that 

the wind energy forecast errors are characterized by a systematic time-series component (Figure 

11).   Observe that there is a nontrivial correlation in the errors beyond one day, i.e. beyond 48 

lags (equivalent to one day given that there are 48 market periods in each day). 

 

 

 

Figure 11: The Autocorrelations in the Day-Ahead Wind Energy Forecast Errors, 1 Jan 

2012–31 Dec 2013 
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We then  assess the relationship between the day-ahead wind energy forecast errors and 

forecasted weather conditions. As Scotland is the dominant source of wind energy in Great 

Britain, the analysis makes use of an archive of hourly day-ahead weather forecasts for 

Edinburgh Airport in Scotland. We obtained these data from CustomWeather, a specialized 

provider of weather forecasts based in San Francisco (http://customweather.com/).   

Ordinary least squares (OLS) regression of National Grid’s wind energy forecast errors on day-

ahead forecasted weather conditions for Edinburgh yields highly statistically significant 

coefficients for forecasted temperature, dewpoint, visibility, and precipitation probability (Table 

1). For example, the OLS results indicate that the error in the wind energy forecast (measured in 

MW) is higher, the higher the forecasted wind speed measured in kilometers per hour. This is 

evidence that there is a flaw in the modeled relationship between forecasted wind speed and 

forecasted wind energy. The OLS analysis of the errors results also indicate that wind energy 

forecast errors are not independent of forecasted wind energy levels. The finding is not unique to 

National Grid. For example, Forbes and Zampelli (2017) have reported that OLS analysis of 

wind forecast errors in the 50Hertz control area in Germany yields similar results. In our opinion, 

this shortcoming is one of the consequences of choosing a metric of forecast accuracy that 

mistakenly telegraphs users that the forecasts are accurate.  

  

http://customweather.com/
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Table 1: Parameter estimates for wind energy forecast errors in Great Britain 

Note: The analysis excludes those market periods in which wind energy output was 

affected by the provision of wind energy balancing services to the system operator. 

 

 

 

7 A Model to Enhance Forecast Accuracy 

 

 

Based on the reported OLS findings, we formulate a model to predict wind energy generation as a 

function of forecasted wind energy generation, the FPNs of wind energy operators, and forecasted 

weather conditions. The model includes binary variables for hour of day, season, and year. The 

linear version is given by: 

 

WindEnergy = Constant + α1 WindFPN + α2 DaForecastedWindEnergy  

 

+ α3 DaForecastedTemp + α4 DaForecastedWindSpeed + α5  DaForecastedHumidity 

 

+ α6 DaForecastedDewPoint +α7 DaForecastedVisibility  +α8 DaForecastedProbPrecip 
 

+   ∑ ϕi𝑃𝑒𝑟𝑖𝑜𝑑𝑜𝑓𝐷𝑎𝑦i 
48
i=2  +  ∑ γi𝑆𝑒𝑎𝑠𝑜𝑛j 

61
j=2  + δ Year2012 + ε    (7) 

 

where 

 

WindEnergy is the metered level of wind energy generation in MW corrected for the provision of 

balancing services; 

Variable Estimated 

Coefficient 

T 

Statistic 

P Value 

Constant -712.676   -9.27 < 0.001 

ForecastedWindEnergy     -0.15 -68.43 < 0.001 

ForecastedTemp    11.942    5.42 < 0.001 

ForecastedWindSpeed      9.642  33.35 < 0.001 

ForecastedHumidity      7.519    9.56 < 0.001 

ForecastedDewPoint  -20.361   -8.55 < 0.001 

ForecastedVisibility     6.397    4.78 < 0.001 

ForecastedProbPrecip 
  -1.234   -7.29 < 0.001 

R-Square (OLS)    0.169   

Number of observations    29,734   
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DaForecastedTemp is the day-ahead forecasted temperature measured in Kelvin; 

DaForecastedWindSpeed is the day-ahead forecasted wind speed; 

DaForecastedHumidity is the day-ahead forecasted relative humidity; 

DaForecastedDewPoint is the day-ahead forecasted dewpoint measured in Kelvin; 

DaForecastedVisibility is the day-ahead forecasted visibility; 

DaForecastedProbPrecip is the forecasted probability of precipitation represented as a percent.; 

DaForecastedWindEnergy is the day-ahead forecasted level of wind energy generation measured 

in MW; 

WindFPN is the final physical notification of expected generation by the wind energy generating 

stations; 

PeriodofDay is a series of binary variables representing the 48 electricity market periods of each 

day; 

Season is a series of binary variables representing the season;  Exclusive of the leap year in 2012, 

each of these binary variables represents six consecutive days.  Thus, the variable represents 61 

“seasons” over the course of a year.  

Year2012 is a binary variable that is equal to one if year equals 2012;  

ε is the random error.The model was estimated using a sample of 33,822 observations for the period 

1 January 2012 through 31 December 2013. To test whether the assumption of linearity is justified, 

we follow Box and Cox (1964) and transform the dependent variable as  

           𝑇𝑊𝑖𝑛𝑑𝐸𝑛𝑒𝑟𝑔𝑦 =  {
(𝑊𝑖𝑛𝑑𝐸𝑛𝑒𝑟𝑔𝑦 +  𝜆2)𝜆1 − 1)/𝜆1 ; 𝜆1 ≠ 0

ln(𝑊𝑖𝑛𝑑𝐸𝑛𝑒𝑟𝑔𝑦 +  𝜆2) ; 𝜆1 = 0
                              (8)            

where: 

 

𝜆1 is a parameter estimate obtained from the Box-Cox procedure;  

 

 𝜆2 is a value that ensures that the left-hand side of equation (7) is positive, in this case, one MW.   
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Inspection of (7) and (8) reveals that the Box-Cox transformation preserves the direction of the 

relationships that the original dependent variable has with the explanatory variables. Under the 

assumption of linearity in the explanatory variables, the estimate of 𝜆1 is 0.599 with a p-value < 

0.001. Linearity in the dependent variable is thus strongly rejected. To test the assumption of 

linearity in the explanatory variables, we relied on the multivariable fractional polynomial (MFP) 

methodology, a useful technique when one suspects that some of the relationships between 

dependent and explanatory variables might be nonlinear (Royston and Sauerbrei, 2008). The 

approach begins by estimating a model strictly linear in the explanatory variables. Subsequent 

estimations cycle through a battery of nonlinear transformations of explanatory variables (e.g., 

cube roots, square roots, squares, etc.) until the model that best predicts the dependent variable is 

found.  

 

In the current context, results provided support for specifying some of explanatory variables with 

powers other than unity. These estimates, however, are conditional on the estimated value of the 

Box-Cox parameter 𝜆1 so that inconsistencies between the two cannot be ruled out. Fortunately, 

the solution is straightforward—iterate between the two until the Box-Cox transformation of the 

dependent variable is consistent with the MFP transformations of the explanatory variables. The 

process yielded a revised estimate of 0.55497 for 𝜆1 and a transformed structural equation given 

by:        

 

TWindEnergy = Constant + β1 WindFPN 2/3 + β2 WindFPN + β3 DaForecastedWindEnergy 1/3 

 

+ β 4  DaForecastedTemp + β5 DaForecastedWindSpeed 3 

 

+ β 6  ln(DaForecastedWindSpeed)*DaForecastedWindSpeed 3 + β7  DaForecastedHumidity3  

 

+ β8 DaForecastedDewPoint + β9  DaForecastedVisibility0.5  + β9 DaForecastedProbPrecip3 
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+   ∑ ϕi𝑃𝑒𝑟𝑖𝑜𝑑𝑜𝑓𝐷𝑎𝑦i 
48
i=2  +   ∑ ϕi𝑆𝑒𝑎𝑠𝑜𝑛j 

61
j=2       

           (9)   

  

Though least squares estimation of (9) produces a seemingly impressive R2 of about 0.97, the 

parameter estimates are highly suspect given that a Portmanteau (Q) test (Box and Pierce, 1970; 

Ljung and Box, 1978) indicates that the OLS residuals are not “white noise.”  The error 

distribution also exhibits greater kurtosis, i.e., a higher incidence of outcomes in the tails, than 

the Gaussian distribution. Not surprisingly, the null hypothesis of normality is rejected by the 

Shapiro-Wilk Normality Test (Shapiro & Wilk, 1965). 

 

We address the problem of autocorrelation in the residuals using an autoregressive–moving-

average with exogenous inputs (ARMAX) model comprised of two components. The first is a 

structural component equivalent to the Box-Cox/MFP transformed equation discussed above, the 

second an ARMA component which models the dependency of the wind energy generation at 

time t on wind energy generation in previous time periods as a combination of an AR(p) process 

and a MA(q) process. The modeled lag lengths are p, q = 1 through 11. Selected parameter 

estimates are reported in Table 2.   

 

The conditional variance was not assumed to be constant. Instead, the conditional variance was 

modeled as a function of 61 variables. These variables include transformed measures of the 

FPNs, forecasted wind speeds, forecasted probability of precipitation, binary measures of 

seasonality and the hour of the day. Thirty-one of these variables were determined to be 

statistically significant.  

The error term was not assumed to be Gaussian. Instead, the distribution of error term was 

modeled using the Student t distribution which allows for more kurtosis. Based on Harvey (2013, 
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p. 20) and the degree of freedom parameter reported by the estimation, the model accommodates 

a kurtosis level that is about twice the level recognized by the Gaussian distribution. 

 

 

Table 2: Estimation results 

Variable Estimated 

Coefficient 

Standard Error T 

Statistic 

P Value 

Const 68.3224 16.7827 4.07 < 0.001  

WindFPN0.667 0.1013 0.0259 3.91 < 0.001 

WindFPN 0.0004 0.0014 0.27 0.785 

DaForecastedWindEnergy0.3333 0.8442 0.0845 9.99 < 0.001 

ForecastedTemperature -0.0540 0.0457 -1.18 0.237 

ForecastedWindSpeed3 0.0003 0.0001 3.59 < 0.001  

Ln(ForecastedWindSpeed)* 

ForecastedWindSpeed3  

-7.6E-05 2.2E-05 -3.53 < 0.001  

ForecastedHumidity3 -3.1E-06 1.1E-06 -2.7 0.007 

ForecastedDewPoint 0.1730 0.0758 2.28 0.023 

ForecastedVisibility0.5 -0.1466 0.1029 -1.42 0.154 

ForecastedProbPrecip3 1.0E-06 9.9E-07 1.05 0.296 

Year2012 -23.0338 5.1671 -4.46 < 0.001 

R-Squared based on all  

estimated parameters 

0.995    

R-Squared based on the  

estimated structural 

 parameters exclusively 

0.472    

Number of Observations 33,822    

28 of the binary variables representing the market period of the day are statistically 

significant. 33 of the binary variables representing the season of the year are statistically 

significant. With respect to the time-series variables, 9 of the AR terms and 8 of the MA 

terms are statistically significant. The specific parameter estimates are not reported here but 

are available from the corresponding author. 

 

 

 

Observe that the estimated coefficient for ForecastedDewPoint is nontrivial in magnitude and 

statistically significant. Other statistically significant continuous variables include 

DaForecastedWindEnergy0.3333, WindFPN0.667, ForecastedWindSpeed3 and 

Ln(ForecastedWindSpeed)*ForecastedWindSpeed3, and ForecastedHumidity3. Twenty-eight of 

binary variables representing unobserved market period specific effects and 33 of the variables 
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that represent unobserved seasonal effects are statistically significant. The R2 based only on the 

structural parameters of the model equals 0.472 while the R2 based on all the parameter estimates 

including the ARMA terms equals 0.995. The differential in these two values is a clear indication 

of the importance of the ARMA terms to the model’s explanatory power. 

 

The model’s predictive power was evaluated for the period 1 January–30 June 2014. The 

WMAPEs, CWRMSEs, and EWRMSEs for the out-of-sample period are reported in Table 3. To 

provide perspective on the values reported in the table, the WMAPE on the day-ahead load 

forecast over this period was 1.46 %, while the EWRMSE was about 1.89 %. Based on the 30-

minute peak level of electricity consumption over the period 1 January 2012–30 June 2014, the 

capacity of the equipment powered by electricity was taken to be 59,199 MW. Based on this 

value, the CWRMSE for the load forecast was about 1.13%.  

 

Over the out-of-sample evaluation period, the day-ahead wind energy forecasts have a WMAPE 

of 23.65 %. The FPN-based projections yield a WMAPE of about 21.31% (Figure 12). In 

contrast, model-based forecasts yield period-ahead wind energy forecasts with an WMAPE of 

about 3.41% and predictive R2 of 0.995. Period-ahead (period t) predictions, however, may be of 

limited value to system operators as they are available only at the end of the previous period 

(period t-1). Accordingly, we calculated predictions that could be made available to a system 

operator one full period prior to real-time, i.e., at the end of period t-2. For this case, the out-of-

sample WMAPE is 5.76% (Figure 13). A similar pattern is evident if one measures the error 

using the EWRMSE or the CWRMSE.  
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Figure 12: The final physical notifications by wind energy operators to the system operator 

and the realized level of wind energy generation corrected for balancing actions, 1 Jan–30 

June 2014 
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Figure 13: One period-ahead out-of-sample econometric predictions and the metered level 

of wind energy generation corrected for balancing actions, 1 Jan–30 June 2014 

 

 

Table 3: Out-of-sample results for wind energy forecasting in Great Britain, 1 Jan 2014 – 

30 June 2014 

 WMAPE % EWRMSE % CWRMSE % 

Day-Ahead Forecast 23.65 31.98 9.79 

Forecast equal to the 

generation level 

declared by operators 

one hour prior to real-

time.  

 

21.31 

 

24.32 7.45 

Econometrically 

Modified one-full 

period-ahead Forecast 

5.76 8.12 2.49 

Econometrically 

Modified Period-Ahead 

Forecast  

3.41 4.77 1.46 
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8 Summary and Conclusion 

 

This paper successfully challenges the claim that wind energy forecasts in Great Britain are 

highly accurate. The claim, based on normalizing the forecast error by wind energy “capacity,” 

conflates the forecasting error in term of energy with the capacity factor. Because the average 

capacity factor for wind energy in Great Britain is relatively low, the capacity weighted error is 

modest, which in turn gives the mistaken impression that wind forecasts are highly accurate. 

Using a metric consistent with the guidance of professional forecasters who work outside the 

wind energy industry offers evidence that day-ahead wind energy forecasts in Great Britain are 

much less accurate than day-ahead load forecasts. We also presented evidence that energy 

imbalances associated with wind energy in Great Britain are far larger relative to metered 

generation than the imbalances associated with other energy sources. 

Regarding prospects for forecast improvement, we demonstrated that the errors in the wind 

energy forecasts are not purely random. Specifically, we have shown that day-ahead wind energy 

forecast errors are not independent of the level of forecasted wind energy or day-ahead 

forecasted weather conditions. We have shown that the wind energy forecast errors are not 

“white noise,” but are characterized by systematic time-series components. Consequently, we 

demonstrated how an ARMAX model can yield very short-run wind energy forecasts that are 

significantly more accurate than existing forecasts. Though this does not fully resolve the 

challenge posed by wind energy’s intermittency, it may enable wind energy to significantly 

improve its capability to reduce carbon emissions without endangering the reliability of the 

power grid.  
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